Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint

نویسندگان

  • Paat Rusmevichientong
  • Zuo-Jun Max Shen
  • David B. Shmoys
چکیده

The paper considers a stylized model of a dynamic assortment optimization problem, where given a limited capacity constraint, we must decide the assortment of products to offer to customers to maximize the profit. Our model is motivated by the problem faced by retailers of stocking products on a shelf with limited capacities and by the problem of placing a limited number of ads on a web page. We assume that each customer chooses to purchase the product (or to click on the ad) that maximizes her utility. We use the multinomial logit choice model to represent demand. However, we do not know the demand for each product. We can learn the demand distribution by offering different product assortments, observing resulting selections, and inferring the demand distribution from past selections and assortment decisions. We present an adaptive policy for joint parameter estimation and assortment optimization. To evaluate our proposed policy, we define a benchmark profit as the maximum expected profit that we can earn if we know the underlying demand distribution in advance. We show that the running average expected profit generated by our policy converges to the benchmark profit and establish its convergence rate. Numerical experiments based on sales data from an online retailer indicate that our policy performs well, generating over 90% of the optimal profit after less than two days of sales. 1. Motivation and Problem Formulation Companies have realized the importance of offering products that are tailored to the demand of customers in each region. For instance, Wal-mart stocks specific lines of clothes targeted exclusively to certain groups of customers (Zimmerman (2006)). Car manufacturers are well-known for ∗School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA. E-mail: [email protected] †Department of Industrial Engineering and Operations Research, University of California–Berkeley, 4129 Etcheverry Hall, Berkeley, CA 94720, USA. E-mail: [email protected] ‡School of Operations Research and Information Engineering and Department of Computer Science, Cornell University, Ithaca, NY 14853, USA. E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Optimization of Assortment Selection and Pricing under the Capacitated Multinomial Logit Choice Model with Product-Differentiated Price Sensitivities

 Joint Optimization of Assortment Selection and Pricing under the Capacitated Multinomial Logit Choice Model with Product-Differentiated Price Sensitivities Ruxian Wang HP Laboratories HPL-2012-207 Multinomial Logit model; assortment optimization; multi-product price optimization Many firms face a problem to select an assortment of products and determine their prices to maximize the total prof...

متن کامل

On upper bounds for assortment optimization under the mixture of multinomial logit models

The assortment optimization problem under the mixture of multinomial logit models is NPcomplete and there are different approximation methods to obtain upper bounds on the optimal expected revenue. In this paper, we analytically compare the upper bounds obtained by the different approximation methods. We propose a new, tractable approach to construct an upper bound on the optimal expected reven...

متن کامل

Assortment optimization under a multinomial logit model with position bias and social influence

Motivated by applications in retail, online advertising, and cultural markets, this paper studies the problem of finding an optimal assortment and positioning of products subject to a capacity constraint in a setting where consumers preferences can be modeled as a discrete choice under a multinomial logit model that captures the intrinsic product appeal, position biases, and social influence. F...

متن کامل

Assortment Optimization under the Multinomial Logit Model with Nested Consideration Sets

We study assortment optimization problems when customers choose under the multinomial logit model with nested considerations sets. In this choice model, there are multiple customer types and a customer of a particular type is interested in purchasing only a particular subset of products. We use the term consideration set to refer to the subset of products that a customer of a particular type is...

متن کامل

Assortment Optimization under Unknown MultiNomial Logit Choice Models

Motivated by e-commerce, we study the online assortment optimization problem. The seller offers an assortment, i.e. a subset of products, to each arriving customer, who then purchases one or no product from her offered assortment. A customer’s purchase decision is governed by the underlyingMultiNomial Logit (MNL) choice model. The seller aims to maximize the total revenue in a finite sales hori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2010